3GPP TS 129 198-2 V0.0.3 (2001-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Open Service Architecture;

Application Programming Interface

Part 2:

(Release 4)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

APIs, Interface Classes, Framework, IDL

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.

Contents

5Foreword

1.
Scope
6
2.
References
6
3.
Definitions, Symbols and Abbreviations
6
3.1
Definitions
6
3.2
Symbols
6
3.3
Abbreviations
6
4.
Introduction
6
4.1
Generic Service Interfaces
7
4.2
Framework Interfaces
7
4.3
Generic Service Data Definitions
7
4.4
Framework Data Definitions
7
4.5
Common Data Definitions
7
4.6
Sequence Transition Diagrams (STDs)
7
4.7
OMG IDL
8
5.0
Common System Data Definitions
8
5.1
Standard Data Types
8
5.2
Other Data Sorts
10
5.3
Interface Related Data Definitions
12
5.4
Method Result Data Definitions
13
5.5
Date and Time Related Data Definitions
16
5.6
Address Related Data Definitions
17
5.7
Price-related Data Definitions
20
History
23

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1. Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose. This document specifies the Common Data Definitions of the interface for 'Access to Third Party Service provision. Only aspects of Common Data Definitions are defined here.
2. References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
ISO 639: "

3. Definitions, Symbols and Abbreviations

3. Definitions

For the purposes of the present document, the following terms and definitions apply.

3. Symbols

For the purposes of the present document, the following symbols apply:

3.
Abbreviations

For the purposes of the present document, the following abbreviations apply:

4. Introduction

This ETSI Standard uses the Unified Modelling Language (UML) to describe access to Third Party Service applications via an API. The API is divided into a number of separate parts, these being:

· Generic Service Interfaces;

· Framework Interfaces;

· Service Data Definitions;

· Framework Data Definitions;

· Common Data Definitions;

· Sequence Transition Diagrams;

· OMG IDL.

The following text briefly describes each part:

4. Generic Service Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client or network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph will need to be altered in light of new interface descriptions.
There are five parts here which represent the Generic Service Interface Classes, these being; Generic Call Control, Generic User Interaction, Generic Messaging, Mobility and Connectivity Management.

Each of these parts defines the interfaces, parameters and state models that form part of the API specification. UML is used to specify the interface classes. As such it provides a UML interface class description of the methods (API calls) supported by that interface and the relevant parameters and types.

4. Framework Interfaces

The API is split into two types of interface class descriptions, Service and Framework. Framework classes are those that are perceived to be applicable to the interface irrespective of the type of service that is being implemented at a specific moment in time e.g. Authentication. Whereas Service Interface classes are individual services that may be required by the client of network operator to enable the running of third party applications over the interface e.g. Messaging type service.

Editors Note: This next paragraph may need altering in light of new interface descriptions
The Framework is split into two different sections, the first addressing the Client view representing interfaces ?????? in figure 2. The second addresses the relationship between the Service and Framework providers indicated by interface 3 in figure 2. The client to Framework section is split into 5 parts these being; Trust and Security Framework (which includes Authentication), Fault Management, Integrity Management, Service Subscription and Service Discovery. The Service to framework interface contains all of the same interfaces except for Service Subscription.

4. Generic Service Data Definitions

This section provides the Data Definitions necessary to support the Generic Service interface. For instance the Generic Call Control Service Data Definitions document describes each of the Data types that were shown in the detailed parameter descriptions made in the 'Generic Call Control Service Interface' part and so on.

4. Framework Data Definitions

This section once again provides the Data Definitions necessary to support the Framework interface.

4. Common Data Definitions

This section provides the Data definitions that are common to both the Framework and Generic Service API parameters.

4. Sequence Transition Diagrams (STDs)

This section contains the sequence transition diagrams from each service. They are used to enhance the understanding of each service in more detail.

4.
OMG IDL

The section provides an OMG IDL version of the whole API. It was felt useful that a working version of the API be produced so that the API could be realisable in the Market place of today.

It was felt appropriate that this section be represented as an Appendix to the Recommendation.

The interface under consideration can be found represented by IF8 and IF9 in Figure 1:

[image: image2.wmf]SCF

SA

-

GF

Distributed

Service Logic

IF8

IF9

Figure 1

5.0
Common System Data Definitions

These data definitions are assumed to be provided by the client operating system.

5.1
Standard Data Types

The APIs assume that the following data types can be supported.

TpBoolean

Defines a Boolean data type.

TpInt32

Defines a signed 32 bit integer.

TpInt32Ref

Defines a TpInt32Reference

 to a .

TpFloat

Defines a single precision real number

TpFloatRef

Defines a Reference to a TpFloat
TpLongstring

Defines a Byte string, comprising length and data. The length must be at least a 32 bit integer.

TpLongstringRef

Defines a TpLongstringReference

 to a .

TpString

Defines a Byte string, comprising length and data. The length must be at least a 16 bit integer.

TpStringRef

Defines a TpStringReference

 to a .

TpAssignmentID

This data type is identical to a TpInt32. It specifies a number which identifies an individual event notification enabled by the application or service.

TpAssignmentIDRef

Defines a Reference to type TpAssignmentID.

TpSessionID

Defines a network unique session ID. The API uses this ID to identify sessions, e.g. call or call leg sessions, within an object implementing an interface capable of handling multiple sessions. For the different services, the sessionIDs are unique only in the context of a service manager instantiation (e.g., within the context of one generic call control manager). As such if an application creates two instances of the same service manager it shall use different instantiations of the callback objects which implement the callback interfaces.

The session ID is identical to a TpInt32 type.

TpSessionIDRef

Defines a Reference to a TpSessionID.

TpSessionIDSet

Defines a Numbered_Set_of_Data_Elements of TpSessionID.

5.2 Other Data Sorts

The APIs assumes that the following data syntaxes can be supported

Sequence of Data Elements

This describes a sequence of data types. This may be defined as a structure (for example, in C++) or simply a sequence of data elements within a structure.

Example

The TpAddress data type may be defined in C++ as:

typedef struct {

 TpAddressPlan Plan;

 TpString AddrString;

 TpString Name;

 TpAddressPresentation.....Presentation;

....TpAddressScreening........Screening;

....TpString..................SubAddressString;

} TpAddress;

Tagged Choice of Data Elements

This describes a data type which actually evaluates to one of a choice of a number of data elements. This data element contains two parts: a tag data type (the tag part) which is used to identify the chosen data type, and the chosen data type itself (the union part). This form of data type is also referred to as a tagged union.

This data type can be implemented (for example, in C++) as a structure containing an integer for the tag part, and a union for the union part.

This data type is implementation specific. Please refer to the appropriate IDL documents (and the resulting language mappings) to see how this data type is implemented.

Example

The TpCallError data type may be defined in C++ as:

typedef struct {

 TpCallErrorType Tag;

 union {

 TpCallErrorInfoUndefined Undefined;

 TpCallErrorInfoRoutingAborted RoutingAborted;

 TpCallErrorInfoCallAbandoned CallAbandoned;

 TpCallErrorInfoInvalidAddress InvalidAddress;

 TpCallErrorInfoInvalidState InvalidState;

 TpCallErrorInfoInvalidCriteria InvalidCriteria;

 } callErrorInfo;

} TpCallError;

Numbered Set of Data Elements

This describes a data type which comprises an integer which indicates the total number of data elements in the set (the number part), and an unordered set of data elements (the data part). Set data types do not contain duplicate data elements.

Example

The TpAddressSet data type may be defined in MIDL as:

typedef struct TpAddressSet

{

TpInt32 Number; [size_is(Number)] TpAddress Set[];

}

TpAddressSet;

Reference

This describes a reference (or pointer) to a data type. This is primarily used to describe 'out' method parameters.

This data type may be implemented (for example, in C++) as a pointer. However, in some languages it may not be necessary for 'out' parameters to be implemented as pointers.

Example

The TpAddressRef data type may be defined in C++ as:

typedef TpAddress * TpAddressRef

5.3 Interface Related Data Definitions

IpInterface

Defines the address of a generic interface instance.

IpInterfaceRef

Defines a IpInterfaceReference

 to type .

IpInterfaceRefRef

Defines a IpInterfaceRefReference

 to type .

5.4 Method Result Data Definitions

TpResult

Defines the Sequence of Data Elements
 that specify the result of a method call. All methods in the APIs return a result of type TpResult.
Sequence Element Name
Sequence Element Type

ResultType
TpResultType

ResultFacility
TpResultFacility

ResultInfo
TpResultInfo

TpResultType

Defines whether the method was successful or not.

Name
Value
Description

P_RESULT_FAILURE
0
Method failed

P_RESULT_SUCCESS
1
Method was successful

TpResultFacility

Defines the facility code of a result. In phase 2 of the APIs, only P_RESULT_FACILITY_UNDEFINED must be used.

Name
Value
Description

P_RESULT_FACILITY_UNDEFINED
0
Undefined

TpResultInfo

Defines further information relating to the result of the method, such as error codes.

Name
Value
Description

P_RESULT_INFO_UNDEFINED
0000h
No further information present

P_INVALID_DOMAIN_ID
0001h
Invalid client ID

P_INVALID_AUTH_CAPABILITY
0002h
Invalid authentication capability

P_INVALID_AGREEMENT_TEXT
0003h
Invalid agreement text

P_INVALID_SIGNING_ALGORITHM
0004h
Invalid signing algorithm

P_INVALID_INTERFACE_NAME
0005h
Invalid interface name

P_INVALID_SERVICE_ID
0006h
Invalid service ID

P_INVALID_EVENT_TYPE
0007h
Invalid event type

P_SERVICE_NOT_ENABLED
0008h
The service ID does not correspond to a service that has been enabled

P_INVALID_ASSIGNMENT_ID
0009h
The assignment ID is invalid

P_INVALID_PARAMETER
000Ah
The method has been called with an invalid parameter

P_INVALID_PARAMETER_VALUE
000Bh
A method parameter has an invalid value

P_PARAMETER_MISSING
000Ch
A mandatory parameter has not been specified in the method call

P_RESOURCES_UNAVAILABLE
000Dh
The required resources in the network are not available

P_TASK_REFUSED
000Eh
The requested method has been refused

P_TASK_CANCELLED
000Fh
The requested method has been cancelled

P_INVALID_DATE_TIME_FORMAT
0010h
Invalid date and time format provided

P_NO_CALLBACK_ADDRESS_SET
0011h
The requested method is refused because no callback address is set

P_INVALID_SIGNATURE
0012h
Invalid digital signature

P_INVALID_SERVICE_TOKEN
0013h
The service token has not been issued, or it has expired.

P_ACCESS_DENIED
0014h
The client is not currently authenticated with the framework

P_INVALID_PROPERTY
0015h
The framework does not recognise the property supplied by the client

P_METHOD_NOT_SUPPORTED
0016h
The method is not allowed or supported within the context of the current service agreement.

P_NO_ACCEPTABLE_AUTH_CAPABILITY
0017h
An authentication mechanism, which is acceptable to the framework, is not supported by the client

P_INVALID_INTERFACE_TYPE
0018h
The interface reference supplied by the client is the wrong type.

P_INVALID_ACCESS_TYPE
0019h
The framework does not support the type of access interface requested by the client.

P_SERVICE_ACCESS_DENIED
001Ah
The client application is not allowed to access this service.

P_USER_NOT_SUBSCRIBED
0030h
An application is unauthorised to access information and request services with regards to users that are not subscribed to the application.

P_APPLICATION_NOT_ACTIVATED
0031h
An application is unauthorised to access information and request services with regards to users that have deactivated that particular application.

P_USER_PRIVACY
0032h
An application is unauthorised to access information and request services with regards to users that have set their privacy flag regarding that particular service.

Name
Value
Description

P_GCCS_SERVICE_INFORMATION_MISSING
0100h
Information relating to the Call Control service could not be found

P_GCCS_SERVICE_FAULT_ENCOUNTERED
0101h
Fault detected in the Call Control service

P_GCCS_UNEXPECTED_SEQUENCE
0102h
Unexpected sequence of methods, i.e., the sequence does not match the specified state diagrams for the call or the call leg.

P_GCCS_INVALID_ADDDRESS
0103h
Invalid address specified

P_GCCS_INVALID_CRITERIA
0104h
Invalid criteria specified

P_GCCS_INVALID_NETWORK_STATE
0105h
Although the sequence of method calls is allowed by the gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the protocol, when the call processing is suspended, e.g., after reporting an event that was monitored in interrupt mode.

Name
Value
Description

P_GMS_INVALID_MAILBOX
0200h
Invalid mailbox number

P_GMS_INVALID_AUTHENTICATION_INFO
0201h
Invalid authentication information

P_GMS_INVALID_SESSION_ID
0202h
Invalid session ID

P_GMS_LOCKING_LOCKED_MAILBOX
0203h
Application attempts to lock a mailbox that has already been locked

P_GMS_UNLOCKING_UNLOCKED_MAILBOX
0204h
The session ID does not correspond to a locked mailbox

P_GMS_INVALID_MESSAGE_FORMAT
0205h
Invalid message format

P_GMS_HEADER_NUMBER_TOO_LARGE
0206h
The number is too large for the service to handle

P_GMS_INSUFFICIENT_HEADERS
0207h
Mandatory headers are not included

P_GMS_MESSAGE_NOT_REMOVED
0208h
The message cannot be removed

P_GMS_INSUFFICIENT_PRIVILEGE
0209h
The application does not have sufficient privilege to remove the message

P_GMS_INVALID_FOLDER_ID
020Ah
The identity of the folder is not valid

P_GMS_FOLDER_DOES_NOT_EXIST
020Bh
The folder does not exist

P_GMS_NUMBER_NOT_POSITIVE
020Ch
The number given is not positive

P_GMS_INVALID_MESSAGE_ID
020Dh
Message ID is not valid

P_GMS_CHANGING_READONLY_PROPERTY
020Eh
The change has not been carried out because some of the properties cannot be modified.

P_GMS_HEADER_DOES_NOT_EXIST
020Fh
Some of the headers do not exist

P_GMS_MAILBOX_LOCKED
0210h
Attempting to update a locked mailbox

P_GMS_CANNOT_UNLOCK_MAILBOX
0211h
Attempting to unlock a mailbox which is locked by another application

P_GMS_PROPERTY_NOT_SET
0212h
Failed attempt to set a property

P_GMS_FOLDER_IS_OPEN
0213h
Failed attempt to open the same folder more than once

P_GMS_MAILBOX_OPEN
0214h
Failed attempt to remove an open mailbox

Name
Value
Description

P_GUIS_INVALID_CRITERIA
0300h
Invalid criteria specified

P_GUIS_ILLEGAL_ID
0301h
Information id specified is invalid

P_GUIS_ID_NOT_FOUND
0302h
A legal information id is not known to the User Interaction Service

P_GUIS_ILLEGAL_RANGE
0303h
The values for minimum and maximum collection length are out of range.

P_GUIS_INVALID_COLLECTION_CRITERIA
0304h
Invalid collection criteria specified

P_GUIS_INVALID_NETWORK_STATE
0305h
Although the sequence of method calls is allowed by the gateway, the underlying protocol can not support it.

E.g., in some protocols some methods are only allowed by the protocol, when the call processing is suspended, e.g., after reporting an event that was monitored in interrupt mode.

P_GUIS_UNEXPECTED_SEQUENCE
0306h
Unexpected sequence of methods, i.e., the sequence does not match the specified state diagrams.

5.5 Date and Time Related Data Definitions

TpDate

This data type is identical to a TpString. It specifies the data in accordance with International Standard ISO 8601. This is defined as the string of characters in the following format:

YYYY-MM-DD
where the date is specified as:

YYYY
four digits year

MM
two digits month

DD
two digits day

The date elements are separated by a hyphen character (-).

EXAMPLE 1:
The 4 December 1998, is encoded as the string:

1998-12-04

TpTime

This data type is identical to a TpString. It specifies the time in accordance with International Standard ISO 8601. This is defined as the string of characters in the following format:

HH:MM:SS.mmm
or

HH:MM:SS.mmmZ
where the time is specified as:

HH
two digits hours (24h notation)

MM
two digits minutes

SS
two digits seconds

mmm
three digits fractions of a second (i.e. milliseconds)

The time elements are separated by a colon character (:).The date and time are separated by a space. Optionally, a capital letter Z may be appended to the time field to indicate Universal Time (UTC). Otherwise, local time is assumed.

EXAMPLE 2:
10:30 and 15 seconds is encoded as the string:

10:30:15.000

for local time, or in UTC it would be:
10:30:15.000Z

TpDateAndTime

This data type is identical to a TpString. It specifies the data and time in accordance with International Standard ISO 8601. This is defined as the string of characters in the following format:

YYYY-MM-DD HH:MM:SS.mmm
or

YYYY-MM-DD HH:MM:SS.mmmZ
where the date is specified as:

YYYY
four digits year

MM
two digits month

DD
two digits day

The date elements are separated by a hyphen character (-).

The time is specified as:

HH
two digits hours (24h notation)

MM
two digits minutes

SS
two digits seconds

mmm
three digits fractions of a second (i.e. milliseconds)

The time elements are separated by a colon character (:).The date and time are separated by a space. Optionally, a capital letter Z may be appended to the time field to indicate Universal Time (UTC). Otherwise, local time is assumed.

EXAMPLE 3:
The 4 December 1998, at 10:30 and 15 seconds is encoded as the string:

1998-12-04 10:30:15.000

for local time, or in UTC it would be:

1998-12-04 10:30:15.000Z

TpDateAndTimeRef

Defines a TpDateAndTimeReference

 to type .

TpDuration

This data type is a TpInt32 representing a time interval in milliseconds. A value of "-1" defines infinite duration and a value of "-2" represents a default duration.

5.6 Address Related Data Definitions

TpAddress

Defines the Sequence of Data Elements
 that specify an address.

Sequence Element Name
Sequence Element Type

Plan
TpAddressPlan

AddrString
TpString

Name
TpString

Presentation
TpAddressPresentation

Screening
TpAddressScreening

SubAddressString
TpString

The AddrString defines the actual address information and the structure of the string depends on the Plan. The following table gives an overview of the format of the AddrString for the different address plans.

Address Plan
AddrString Format Description
Example

P_ADDRESS_PLAN_NOT_PRESENT
Not applicable

P_ADDRESS_PLAN_UNDEFINED
Not applicable

P_ADDRESS_PLAN_IP
For Ipv4 the dotted quad notation is used. Also for IPv6 the dotted notation is used. The address can optionally be followed by a port number separated by a colon.
"127.0.0.1:42"

P_ADDRESS_PLAN_MULTICAST
An Ipv4 class D address or Ipv6 equivalent in dotted notation.
"224.0.0.0"

P_ADDRESS_PLAN_UNICAST
A non multicast or broadcast IP address in dotted notation.
"127.0.0.1"

P_ADDRESS_PLAN_E164
An international number without the international access code, including the country code and excluding the leading zero of the area code.
"31161249111"

P_ADDRESS_PLAN_AESA
The ATM End System Address in binary format (40 bytes)
01234567890ABCDEF01234567890ABCDEF01234567

P_ADDRESS_PLAN_URL
A uniform resource locator as defined in IETF RFC 1738
"http://www.parlay.org"

P_ADDRESS_PLAN_NSAP
The binary representation of the Network Service Access Point
490001AA000400010420

P_ADDRESS_PLAN_SMTP
An e-mail address as specified in IETF RFC822
"webmaster@parlay.org"

P_ADDRESS_PLAN_MSMAIL
Identical to P_ADDRESS_PLAN_SMTP
"john.doe@hitech.com"

P_ADDRESS_PLAN_X400
The X400 address structured as a set of attibute value pairs separated by semicolons.
"C=nl;ADMD= ;PRMD=uninet;O=parlay;S=Doe;I=S;G=John'

TpAddressRef

Defines a TpAddressReference

 to type .
TpAddressSet

Defines a Numbered_Set_of_Data_Elements of TpAddress.
TpAddressSetRef

Defines a TpAddressSetReference

 to type .

TpAddressPresentation

Defines whether an address can be presented to an end user.
Name
Value
Description

P_ADDRESS_PRESENTATION_UNDEFINED
0
Undefined

P_ADDRESS_PRESENTATION_ALLOWED
1
Presentation Allowed

P_ADDRESS_PRESENTATION_RESTRICTED
2
Presentation Restricted

P_ADDRESS_PRESENTATION_ADDRESS_NOT_AVAILABLE
3
Address not available for presentation

TpAddressScreening

Defines whether an address can be presented to an end user.
Name
Value
Description

P_ADDRESS_SCREENING_UNDEFINED
0
Undefined

P_ADDRESS_SCREENING_USER_VERIFIED_PASSED
1
user provided address
verified and passed

P_ADDRESS_SCREENING_USER_NOT_VERIFIED
2
user provided address
not verified

P_ADDRESS_SCREENING_USER_VERIFIED_FAILED
3
user provided address
verified and failed

P_ADDRESS_SCREENING_NETWORK
4
Network provided address (Note that even though the application may provide the address to the gateway, from the end-user point of view it is still regarded as a network provided address)

TpAddressPlan

Defines the address plan (or numbering plan) used. It is also used to indicate whether an address is actually defined in a TpAddress data element.

Name
Value
Description

P_ADDRESS_PLAN_NOT_PRESENT
-1
No Address Present

P_ADDRESS_PLAN_UNDEFINED
0
Undefined

P_ADDRESS_PLAN_IP
1
IP

P_ADDRESS_PLAN_MULTICAST
2
Multicast

P_ADDRESS_PLAN_UNICAST
3
Unicast

P_ADDRESS_PLAN_E164
4
E.164

P_ADDRESS_PLAN_AESA
5
AESA

P_ADDRESS_PLAN_URL
6
URL

P_ADDRESS_PLAN_NSAP
7
NSAP

P_ADDRESS_PLAN_SMTP
8
SMTP

P_ADDRESS_PLAN_MSMAIL
9
Microsoft Mail

P_ADDRESS_PLAN_X400
10
X.400

For the case where the P_ADDRESS_PLAN_NOT_PRESENT is indicated, the rest of the information in the TpAddress is not valid.

TpAddressError
Defines the reasons why an address is invalid.
Name
Value
Description

P_ADDRESS_INVALID_UNDEFINED
0
Undefined error

P_ADDRESS_INVALID_MISSING
1
Mandatory address not present

P_ADDRESS_INVALID_MISSING_ELEMENT
2
Mandatory address element not present

P_ADDRESS_INVALID_OUT_OF_RANGE
3
Address is outside of the valid range

P_ADDRESS_INVALID_INCOMPLETE
4
Address is incomplete

P_ADDRESS_INVALID_CANNOT_DECODE
5
Address cannot be decoded

TpAddressRange

This type is identical to TpAddress with the difference that the AddrString can contain wildcards.

Two wildcards are allowed: * which matches zero or more characters and ? which matches exactly one character. The wildcards are only allowed at the end or at the beginning of the AddrString.

Some examples for E164 addresses:

· "123"

matches specifies number;

· "123*"

matches all numbers starting with 123 (including 123 itself);

· "123??*"

matches all numbers starting with 123 and at least 5 digits long;

· "123???"

matches all numbers starting with 123 and exactly 6 digits long;

For e-mail style addresses, the wildcards are allowed at the beginning of the AddrString:

· "*@parlay.org"
matches all email addresses in the parlay.org domain.

The following address ranges are illegal:

· 1?3

· 1*3

· ?123*

Legal occurrences of the '*' and '?' characters in AddrString should be escaped by a '\' character. To specify a '\' character '\\' must be used.

TpURL

This data type is identical to a TpString and contains a URL address. The usage of this type is distinct from TpAddress, which can also hold a URL. The latter contains a user address which can be specified in many ways: IP, e-mail, URL etc. On the other hand, the TpURL type does not hold the address of a user and always represents a URL. This type is used in user interaction and defines the URL of the test or stream to be sent to an end-user. It is therefore inappropriate to use a general address here.

5.7 Price-related Data Definitions

TpPrice

This data type is identical to a TpString. It specifies price information. This is defined as a string of characters (digits) in the following format:

DDDDDD.DD
TpAoCInfo

Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to the terminal.

Sequence Element Name
Sequence Element Type
Description

ChargeOrder
TpAoCOrder
Charge order

Currency
TpString

Currency unit according to ISO-4217:1995

TpAoCOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpAoCOrderCategory

Tag Element Value
Choice Element Type
Choice Element Name

P_CHARGE_ADVICE_INFO
TpChargeAdviceInfo
ChargeAdviceInfo

P_CHARGE_PER_TIME
TpChargePerTime
ChargePerTime

P_CHARGE_NETWORK
TpString
NetworkCharge

TpCallAoCOrderCategory

Name
Value
Description

P_CHARGE_ADVICE_INFO
0
Set of GSM Charge Advice Information elements according to 3GPP TS 22.024

P_CHARGE_PER_TIME
1
Charge per time

P_CHARGE_NETWORK
2
Operator specific charge plan specification, e.g. charging table name / charging table entry

TpChargeAdviceInfo

Defines the Sequence of Data Elements that specify the two sets of Advice of Charge parameters. The first set defines the current tariff. The second set may be used in case of a tariff switch in the network.

Sequence Element Name
Sequence Element Type
Description

CurrentCAI
TpCAIElements
Current tariff

NextCAI
TpCAIElements
Next tariff after tariff switch

TpCAIElements

Defines the Sequence of Data Elements that specify theCharging Advice Information elements according to 3GPP TS 22.024.

Sequence Element Name
Sequence Element Type
Description

UnitsPerInterval
TpInt32
Units per interval

SecondsPerTimeInterval
TpInt32
Seconds per time interval

ScalingFactor
TpInt32
Scaling factor

UnitIncrement
TpInt32
Unit increment

UnitsPerDataInterval
TpInt32
Units per data interval

SegmentsPerDataInteral
TpInt32
Segments per data interal

InitialSecsPerTimeInterval
TpInt32
Initial secs per time interval

TpChargePerTime

Defines the Sequence of Data Elements that specify the time based charging information.
Sequence Element Name
Sequence Element Type
Description

InitialCharge
TpInt32
Initial charge amount (in currency units * 0.0001)

CurrentChargePerMinute
TpInt32
Current tariff (in currency units * 0.0001)

NextChargePerMinute
TpInt32
Next tariff (in currency units * 0.0001) after tariff switch

Only used in setAdviceOfCharge()

TpLanguage

This data type is identical to a TpString, and defines the language. In case an indication for the language is not needed an empty string must be used. In other cases valid language strings are defined in ISO 639.

History

Document history

_1045060777.vsd

